Merge remote-tracking branch 'origin/main'

This commit is contained in:
fzzinchemical
2025-07-21 11:52:03 +02:00
20 changed files with 363 additions and 159 deletions

View File

@@ -3,90 +3,61 @@
### 🔁 Wiederholung aus Teil 1
- **Instruktionstypen (MIPS):**
- **R-Format:** arithmetische/logische Operationen (z.B. `add $s1,$s2,$s3`)
- **Load/Store:** Speicherzugriff (z.B. `lw`, `sw`)
- **Branch:** bedingte Sprünge (`beq`, `bne`)
- **R-Format:** arithmetische/logische Operationen (z.B. `add $s1,$s2,$s3`)
- **Load/Store:** Speicherzugriff (z.B. `lw`, `sw`)
- **Branch:** bedingte Sprünge (`beq`, `bne`)
- **Datenpfad (Full Datapath):**
- Register → ALU → Speicher → Register
- Separate Instruktions- und Datenspeicher nötig, da ein Zugriff pro Zyklus
- Register → ALU → Speicher → Register
- Separate Instruktions- und Datenspeicher nötig, da ein Zugriff pro Zyklus
---
### ⚙️ Steuerungseinheit (Control Unit)
- **Erzeugt Steuersignale aus dem Opcode:**
- **MemtoReg:** bestimmt Datenquelle für Register-Schreiben
- **ALUSrc:** wählt ALU-Operand (Register vs. unmittelbarer Wert)
- **RegWrite:** aktiviert Schreibzugriff auf Register
- **MemRead/MemWrite:** steuern Speicherzugriffe
- **Branch:** aktiviert bei bedingten Sprüngen
- **MemtoReg:** bestimmt Datenquelle für Register-Schreiben
- **ALUSrc:** wählt ALU-Operand (Register vs. unmittelbarer Wert)
- **RegWrite:** aktiviert Schreibzugriff auf Register
- **MemRead/MemWrite:** steuern Speicherzugriffe
- **Branch:** aktiviert bei bedingten Sprüngen
- **ALU Control:**
- Basierend auf Opcode und Funct-Feld
- Basierend auf Opcode und Funct-Feld
- Beispiel Mapping:
|ALUOp|Funct|ALU-Funktion|
|---|---|---|
|00|XXXXXX|`add`|
|01|XXXXXX|`sub`|
|10|100000|`add`|
|10|100010|`sub`|
|10|100100|`and`|
|10|100101|`or`|
|10|101010|`slt`|
| ALUOp | Funct | ALU-Funktion |
| ----- | ------ | ------------ |
| 00 | XXXXXX | `add` |
| 01 | XXXXXX | `sub` |
| 10 | 100000 | `add` |
| 10 | 100010 | `sub` |
| 10 | 100100 | `and` |
| 10 | 100101 | `or` |
| 10 | 101010 | `slt` |
---
### 📦 Erweiterter Datenpfad
- Unterstützung für:
- **Jumps (`j`, `jal`):**
- PC-Update mit 26-Bit Zieladresse + oberen 4 Bit des alten PCs
- Steuerleitung „Jump“ wird aus Opcode dekodiert
- **Branches (`beq`, `bne`):**
- Zieladresse berechnen (PC+4 + Offset << 2)
- ALU prüft, ob Bedingung erfüllt (Zero-Flag)
- **Jumps (`j`, `jal`):**
- PC-Update mit 26-Bit Zieladresse + oberen 4 Bit des alten PCs
- Steuerleitung „Jump“ wird aus Opcode dekodiert
- **Branches (`beq`, `bne`):**
- Zieladresse berechnen (PC+4 + Offset << 2)
- ALU prüft, ob Bedingung erfüllt (Zero-Flag)
---
### 🚨 Performance-Betrachtung
- **Ein-Zyklus-Datenpfad Problem:**
- Längster Pfad (Critical Path) bestimmt Taktfrequenz
- Beispiel: Load-Befehl → Instruktionsspeicher → Registerfile → ALU → Datenspeicher → Registerfile
- Unterschiedliche Instruktionen hätten unterschiedliche Latenzen → nicht praktikabel
- Längster Pfad (Critical Path) bestimmt Taktfrequenz
- Beispiel: Load-Befehl → Instruktionsspeicher → Registerfile → ALU → Datenspeicher → Registerfile
- Unterschiedliche Instruktionen hätten unterschiedliche Latenzen → nicht praktikabel
- **Lösung:** **Pipelining**
- Aufteilung des Datenpfads in Stufen
- Überlappende Bearbeitung mehrerer Instruktionen
- Aufteilung des Datenpfads in Stufen
- Überlappende Bearbeitung mehrerer Instruktionen
---