Labor ,,Mikrocontroller" Jan Bredereke
SoSe 2024 Hochschule Bremen

A: 20.6. / B: 27.6.2024

Laboraufgabe 6

Programmierung einer 32-Bit-Addition in Assembler

In dieser Aufgabe schreiben Sie einige kleine Programme in Assembler, die auf verschiedene Weisen
eine 32-Bit-Addition ausfiihren. Ziel der Aufgabe ist, dass Sie lernen, ein sehr einfaches Assember-
Programm zu schreiben, mithilfe der Entwicklungsumgebung zu iibersetzen und ablaufen zu lassen
und Fehler darin zu suchen und zu beheben. Uber die verschiedenen Varianten des Assembler-
Programms lernen Sie weiterhin die Anwendung mehrerer verschiedener Adressierungsarten,
insbesondere die indirekte Adressierung und dabei auch den Zugriff auf den externen Speicher mit
mehreren Data-Pointern.

Einen Laborbericht miissen Sie nicht schreiben. Als Ergebnis miissen Sie am Ende jeder der
drei Teilaufgaben |hr laufendes Programm sowie den dazugehorigen Quellcode Herrn Bredereke
vorfiihren.

Voriibung: Ausfiihren einer fertigen Vorlage

In Aulis finden Sie das Assembler-Programm add_direkt.a51. Das Assembler-Programm enthalt
ein Unterprogramm add_direkt, das zwei 32-Bit-Zahlen addiert, indem es direkte Adressierung
verwendet. Es erwartet den ersten Summanden im internen Speicher an den Adressen 40h bis 43h.
Der zweite Summand muss entsprechend an den Adressen 50h bis 53h des internen Speichers stehen.
Das Ergebnis wird vom Programm an die Speicherstellen des ersten Summanden geschrieben.
Beachten Sie, dass das niederwertigste Byte (LSB) an der héchsten Adresse (z.B. 43h) und das
hochstwertige Byte (MSB) an der niedrigsten Adresse (z.B. 40h) erwartet wird. AuRerdem enthalt
das Assembler-Programm ein Hauptprogramm, das die Summanden bereitstellt und dann das
Unterprogramm add_direkt aufruft. Zahl als LSB

e Legen Sie in der Entwicklungsumgebung ein Projekt an, fiigen Sie die Assembler-Datei
add_direkt.a51 dazu, libersetzen Sie sie und fiihren Sie sie im Simulator oder ggf. nach
Wounsch auf dem echten Mikrocontroller C515C aus.

e Uberpriifen Sie das Ergebnis der Addition.

e Andern Sie die Werte der Summanden im Hauptprogramm und fiihren Sie die Addition
erneut aus.

e Andern Sie die Werte der Summanden direkt im Simulator und starten Sie die Addition
beim Aufruf des Unterprogramms.

e Starten Sie das Hauptprogramm wieder wie vorher am Anfang und arbeiten es im Ein-
zelschrittbetrieb solange ab, bis der Aufruf des Unterprogramms erfolgt. Beobachten und
interpretieren Sie die Verdnderungen des Stackpointers und die Veranderungen des Stacks.

e Setzen Sie einen Unterbrechungspunkt (Breakpoint) auf die Programmadresse, an der der
Unterprogrammaufruf steht. Fiihren Sie ab da das Programm in Einzelschrittmodus aus.

Seite 1 / 3 2024-06-14, 11:00:51


Zahl als LSB


1. Indirekte Adressierung internen Speichers iiber Register

e Kopieren Sie das obige Programm in eine Datei add_indirekt.a51, benennen Sie das
Unterprogramm ebenfalls entsprechend um und legen Sie zur neuen Datei ein weiteres
Projekt an.

e Andern Sie den Code so, dass dem Unterprogramm nun als Parameter die Adresse des

niederwertigsten Bytes -) de en bzw. des Ergebnisses in Register.
iibergeben wird und die Adresse des des en in Register- iibergeben

wird.

e Andern Sie den Code weiterhin so, dass die_ durch

einen einzigen Additionsbefehl in einer Schleife realisiert werden.

e Das Unterprogramm soll auch mit einem beliebigen anderen Hauptprogramm funktionieren
konnen, sofern dieses als Parameter genau die beiden Register RO und R1 iibergibt.

e Testen Sie lhr neues Unterprogramm, unter anderem mit den Summanden aus der Voriibung,
und beheben Sie ggf. Fehler. Kopieren Sie dabei den Teil des Hauptprogramms, der die
Parameter setzt und add_indirekt aufruft, so dass er gedoppelt ist, und tragen Sie in die
Kopie eigene Summanden und andere Adressen dafiir ein (d.h. nicht sum1 und sum2).

2. Adressierung externen Speichers iiber 8-Bit-Register

e Kopieren Sie das Programm aus der vorigen Teilaufgabe in eine Datei add_extern.a51,
benennen Sie das Unterprogramm ebenfalls entsprechend um und legen Sie zur neuen Datei
ein weiteres Projekt an.

e Andern Sie den Code so, dass die Summanden nun nicht im internen Speicher, sondern im
externen Speicher liegen, und zwar im Adressbereich zwischen Oh und Offh (8-Bit-Adressen).

Beachten Sie, dass unsere Mikrocontroller iiber volle 64 kByte Speicher verfiigen, und dass
daher die 8-Bit-Adressierung nur einen Teilbereich des vorhandenen Speichers erreicht. Die
oberen 8 Bit der resultierenden Adresse werden durch den Ausgabeport P2 bestimmt. Dieser
enthilt nach einem Systemstart zunichst den Wert 0ffh und muss daher vor einem Zugriff
auf den externen Speicher passend initialisiert werden.

e Das Unterprogramm soll wiederum auch mit einem beliebigen anderen Hauptprogramm
funktionieren kdnnen, sofern dieses als Parameter genau die beiden Register RO und R1
iibergibt.

e Testen Sie lhr neues Unterprogramm, unter anderem mit den Summanden aus der Voriibung,
und beheben Sie ggf. Fehler. Kopieren Sie dabei den Teil des Hauptprogramms, der die
Parameter setzt und add_extern aufruft, so dass er gedoppelt ist, und tragen Sie in die
Kopie eigene Summanden und andere Adressen dafiir ein (d.h. nicht sum1 und sum2).

3. Adressierung externen Speichers iiber 16-Bit-Register
e Kopieren Sie das Programm aus der vorigen Teilaufgabe in eine Datei add_dptr.a51,

benennen Sie das Unterprogramm ebenfalls entsprechend um und legen Sie zur neuen Datei
ein weiteres Projekt an.

Seite 2 / 3



Mikrocontroller SoSe 2024

e Andern Sie den Code so, dass die Summanden nun an beliebigen Stellen im externen Speicher
liegen konnen, d.h. im Adressbereich zwischen Oh und Offffh (16-Bit-Adressen).

Nutzen Sie aus, dass der Mikrocontroller C515C nicht nur tber einen, sondern tiber -
_verfijgt, von denen jeweils einer als aktiver Datapointer ausgewahlt werden
kann. Dies kann mithilfe des Special-Function-Registers DPSEL geschehen, vergleiche den Fo-
liensatz und das Notizen-Dokument ,,Die Strukturerweiterungen des C515C-Mikrocontrollers”,
Abschnitt ,,Data-Pointer".

Dem
,und in

Beachten Sie, dass es zwar einen Maschinenbefehl gibt, um den Datapointer zu inkremen-
tieren, aber aber keinen Maschinenbefehl, um ihn zu dekrementieren, und dass weiterhin die
Anordung der Bytes in den 32-Bit-Zahlen ein Dekrementieren verlangt. Realisieren Sie das
Dekrementieren daher mit Hilfe eines eigenen Unterprogramms, das den 16-bittigen DPTR
iiber die beiden 8-bittigen Special-Function-Register DPL und DPH geeignet manipuliert.

e Testen Sie lhr neues Unterprogramm, unter anderem mit den Summanden aus der Voriibung,
und beheben Sie ggf. Fehler.

Testen Sie insbesondere mit den Adressen DPTR0=2002h (d.h. Daten von 1fffh bis 2002h)
und DPTR1=2012h sowie mit den Adressen DPTR0=3001h und DPTR1=3011h, und zwar
in beiden Fallen mit den 32-Bit-Zahlen aus der obigen Vorlage.

Seite 3/ 3



	Indirekte Adressierung internen Speichers über Register
	Adressierung externen Speichers über 8-Bit-Register
	Adressierung externen Speichers über 16-Bit-Register

